4,817 research outputs found

    Mean and fluctuating flow measurements in axisymmetric supersonic boundary layer flow subjected to distributed adverse pressure gradients

    Get PDF
    Measurements have been made of the mean flow properties and turbulent fluctuations in adiabatic turbulent boundary layer flows subjected to distributed adverse pressure gradients. In the freestream region upstream of the adverse pressure gradient the Mach number was 3.86, the unit Reynolds number 5.3 million per foot. The boundary layer developed on the wall of an axisymmetric nozzle and straight test section. In order to avoid the effects of streamwise surface curvature the adverse pressure gradients at the test section wall were induced by contoured centerbodies mounted on the wind tunnel centerline. The flow under study simulated that which might be found in an axially symmetric engine inlet of a supersonic aircraft

    Unsteady three-dimensional simulation of VTOL upwash fountain turbulence

    Get PDF
    Numerical simulations of a planar turbulent wall jet and a planar VTOL upwash fountain were performed. These are three dimensional simulations which resolve large scale unsteady motions in the flows. The wall jet simulation shows good agreement with experimental data and is presented to verify the simulation methodology. Simulation of the upwash fountain predicts elevated shear stress and a half velocity width spreading rate of 33% which agrees well with experiment. Turbulence mechanisms which contribute to the enhanced spreading rate are examined

    Developing a Best Practices Plan for Tutorials in a Multi-Library System

    Get PDF
    In 2010, the University of Iowa's library system administration created a task force to conduct a reevaluation of tools and spaces used for video tutorial creation across a multi-library system. Following this effort, a working group was charged with improving documentation and staff awareness of resources for developing video tutorials. The group observed that librarians were often independently creating videos that were variable in quality, lacked consistent branding, and were not often shared with others. This article will describe experiences at the Hardin Library for the Health Sciences at the University of Iowa in selecting video tutorial software, and striving to establish a more structured process, including team-developed guidelines, for tutorial creation in a multi-library system. Project limitations and areas for future work will also be presented

    Shock-induced separation of adiabatic turbulent boundary layers in supersonic axially symmetric internal flow

    Get PDF
    An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur

    Influence of suction on shock wave-turbulent boundary layer interactions for two- dimensional and axially symmetric flows, 16 September 1967 - 30 June 1969

    Get PDF
    Influence of suction on shock wave turbulent boundary layer interactions for two dimensional and axially symmetric flow

    Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions

    Get PDF
    A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed

    A wall-wake velocity profile for turbulent compressible boundary layers with heat transfer

    Get PDF
    A modified form of the wall-wake profile which is applicable to flows with heat transfer is presented. The modified profile takes into account the effect of a turbulent Prandtl number; it was found to provide a good representation of the experimental data from several sources. The C sub f values which are determined by a least squares fit of the profile to the data agree well with values which were measured by the floating element technique

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    An analysis of turbulent boundary layer flow characteristics and the computational procedure used are discussed. The integrated mass and momentum flux profiles and differentials of the integral quantities are used in the computations so that local evaluation of the streamwise velocity gradient is not necessary. The computed results are compared with measured shear stress data obtained by using hot wire anemometer and laser velocimeter techniques. The flow measurements were made upstream and downstream of an adiabatic unseparated interaction of an oblique shock wave with the turbulent boundary layer on the flat wall of a two dimensional wind tunnel. A comparison of the numerical analysis and actual measurements is made and the effects of small differences in mean flow profiles on the computed shear stress distributions are discussed

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    Turbulent shear stress distributions for supersonic boundary layer flows have been computed from experimental mean boundary layer data. The computations have been made by numerically integrating the time averaged continuity and streamwise momentum equations. Distributions have been obtained for flows upstream and downstream of shock-wave-boundary layer interactions and for both two-dimensional and axisymmetric flows. The computed results are compared with recently reported shear stress measurements which were obtained by hot wire anemometer and laser velocimeter techniques

    Metal alloy resistivity measurements at very low temperatures

    Get PDF
    High speed, automated system accurately measures to approximately one percent in three minutes. System identifies materials having constant thermal or electric conductivity, predicts new material properties, develops alloys in accordance with desired specifications, and develops nondestructive devices for measuring precipitation hardening
    • …
    corecore